Remote Sensing and GIS in Environmental Management
According to the United Nations, the earth’s population is expected to grow to 9.7 billion people in 2050. As our population grows, new challenges to monitoring the environment and climate change will arise. Responsible and successful environmental management is necessary for protecting and restoring the natural environment. The interdependency of the earth’s ecosystems and the human impact on the environment present complex challenges to governments and businesses as well as scientists and environmentalists in every discipline. As a result, there is a growing need for remote sensing of the environment at a global and local scale.
This is a preview of subscription content, log in via an institution to check access.
Access this chapter
Subscribe and save
Springer+ Basic
€32.70 /Month
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (France)
eBook EUR 85.59 Price includes VAT (France)
Hardcover Book EUR 105.49 Price includes VAT (France)
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Environmental Applications of Remote Sensing in Egypt: A Review and an Outlook
Chapter © 2020
Conclusions and Recommendations for “Environmental Remote Sensing and GIS in Tunisia”
Chapter © 2021
Introduction to “Environmental Remote Sensing and GIS in Tunisia”
Chapter © 2021
References
- Ackermann, F. (1999). Airborne laser scanning—Present status and future expectations. ISPRS J. Photogramm. Remote Sens., 54: 64–67. Google Scholar
- Adam, E., Mutanga, O. and Rugege, D. (2010). Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: A review. Wetlands Ecol. Manag., 18: 281–296. ArticleGoogle Scholar
- Agardy, T., Alder, J., Dayton, P., Curran, S., Kitchingman, A., Wilson, M., Catenazzi, A., Restrepo, J., Birkeland, C., Bla-Ber, S., Saifullah, S., Branch, G., Boersma, D., Nixon, S., Dugan, P., Davidson, N. and Vorosmarty, C. (eds.) (2005). Ecosystems and human well-being: Current state and trends. Millennium Assessment Report Series. Global Assessment Reports. Island Press, Washington, DC, pp. 513–549. Google Scholar
- Agbu, P.A. and James, M.E. (1994). NOAA/NASA Pathfinder AVHRR Land Data Set User’s Manual. Goddard Distributed Active Archive Center, NASA Goddard Space Flight Center, Greenbelt. Google Scholar
- Akiwumi, F.A. and Butler, D.R. (2007). Mining and environmental change in Sierra Leone, West Africa: A remote sensing and hydrogeomorphological study. J. Environ. Monit. Assess. Springer Netherlands. ISSN: 0167-6369. Google Scholar
- Allen, T.R. and Kupfer, J.A. (2000). Application of spherical statistics to change vector analysis of landsat data: Southern Appalachian Spruce – Fir forests. RS Environ, 74(3): 482–493. Google Scholar
- Bahuguna, I.M., Nayak, S., Tamilarsan, V. and Moses, J. (2003). Groundwater prospective zones in Basaltic terrain using remote sensing. J. Indian Soc. Remote Sens., 31(2): 101–105. ArticleGoogle Scholar
- Bahuguna, A. (2008). Impact of climate change on coral reefs. Indian Soc. Geomatics (ISG) Newlett., 14(1–4): 44-48. Google Scholar
- Balopoulos, E.Th., Collins, M.B. and James, A.E. (1986). Satellite images and their use in the numerical modelling of coastal processes. Int. J. Remote Sens., 7(7): 905–919. ArticleGoogle Scholar
- Bhandari, S.M., Vyas, N.K., Dash, M.K., Khanolkar, A., Sharma, N. and Khare, N. (2005). Simultaneous MSMR and SSM/I observations and analysis of Sea Ice characteristics over the Antarctic region. Int. J. Remote Sens., 26: 3123–3136. ArticleGoogle Scholar
- Bhaskaran, S., Paramananda, S. and Ramnarayan, M. (2010). Per-pixel and object oriented classification methods for mapping urban features using Ikonos satellite data. Appl. Geogr., 30(4): 650–665. ArticleGoogle Scholar
- Bhatta, B. (2008). Analysis of urban growth pattern using remote sensing and GIS: A case study of Kolkata, India. Int. J. Remote Sens., 30(18): 4733–4746. Google Scholar
- Bhatta, B. (2010). Analysis of Urban Growth and Sprawl from Remote Sensing Data.Springer-Verlag, Berlin, Heidelberg, New York. 170 pp. Google Scholar
- Blum, M.D. and Roberts, H.H. (2009). Drowning of the Mississippi Delta due to insufficient sediment supply and global sea-level rise. Nat. Geosci., 2: 488–491. ArticleCASGoogle Scholar
- Bourgeau-Chavez, L.L., Smith, K.B., Brunzell, S.M., Kasischke, E.S., Romanowicz, E.A. and Richardson, C.J. (2005). Remote monitoring of regional inundation patterns and hydroperiod in the Greater Everglades using Synthetic Aperture Radar. Wetlands, 25: 176–191. ArticleGoogle Scholar
- Budd, J.W., Drummer, T.D., Nalepa, T.F. and Fahnenstiel, G.L. (2001). Remote sensing of biotic effects: Zebra mussels (Dreissena polymorpha) influence on water clarity in Saginaw Bay, Lake Huron. Limnol. Oceanogr., 46(2): 213–223. ArticleGoogle Scholar
- Burrough, P.A. and McDonnell, R.A. (1998). Principles of Geographic Information Systems. Oxford University Press, Oxford, UK, pp. 10–16. Google Scholar
- Byun, Y., Choi, J. and Han, Y. (2013). An area based image fusion scheme for the integration of SAR and optical satellite imagery. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sensing, 6(5): 2212–2220. ArticleGoogle Scholar
- Campbell, J.B. (1987). Introduction to Remote Sensing. Guilford Press, New York. Google Scholar
- Campbell, J.B. and Wynne R.H. (2011). Introduction to Remote Sensing, 5th edition. The Guilford Press, New York, 662 pp. Google Scholar
- Chakraborti, A.K. (1989). Role of water management in urban settlement in India: A remote sensing based assessment. National Remote Sensing Agency, Hyderabad Technical Report, 40: 1–12. Google Scholar
- Chakraborti, A.K. (1999). Satellite remote sensing for near-real-time flood and drought impact assessment – India experience. Workshop on Natural Disasters and their Mitigation—A Remote Sensing and GIS Perspective, 11–15 October 1999, Dehradun, India. Google Scholar
- Chakraborty, S., Paul, P.K. and Sikdar, P.K. (2007). Assessing aquifer vulnerability to arsenic pollution using DRASTIC and GIS of North Bengal Plain: A case study of English Bazar Block, Malda District, West Bengal, India. J. Spat. Hydrol., 7(1): 101–121. Google Scholar
- Chatterjee, N., Mukhopadhyay, R. and Mitra, D. (2015). Decadal changes in shoreline patterns in Sundarbans, India. J. Coastal Sci., 2(2): 54−64. Google Scholar
- Cheng, Z., Wang, X., Paull, D. and Gao, J. (2016). Application of the geostationary ocean color imager to mapping the diurnal and seasonal variability of surface suspended matter in a macro-tidal estuary. Remote Sens., 8: 244; doi:https://doi.org/10.3390/rs8030244. ArticleGoogle Scholar
- Chhabra, A., Manjunath, K.R., Panigrahy, S. and Parihar, J.S. (2009). Spatial pattern of methane emissions from Indian livestock. Curr. Sci., 96(5): 683–689. CASGoogle Scholar
- Coleman, J.M., Huh, O.K. and Braud, D.W. Jr. (2008). Wetland loss in world deltas. J. Coastal Res., 24(1A): 1–14. ArticleGoogle Scholar
- Costanza, R., d’Arge, R., De Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O’Neill, R.V., Paruelo, J., Raskin, R.G., Sutton, P. and Van Den Belt, M. (1997). The value of the world’s ecosystem services and natural capital. Nature, 387: 253–260. ArticleCASGoogle Scholar
- Czajkowski, K., Torbick, N. and Lawrence, P. (2007). Application and Assessment of a Giscience Model for Jurisdictional Wetlands Identification in Northwestern Ohio Wetland and Water Resource Modeling and Assessment: A Watershed Perspective, pp. 2−12. CRC Press. Google Scholar
- Czech, B. and Krausman, P.R. (1997). Distribution and causation of species endangerment in the United States. Science, 277: 116−117. ArticleGoogle Scholar
- Das, I.C. and Nizamuddin, M. (2002). Spectral signatures and spectral mixture modeling as a tool for targeting laterite and bauxite ore deposits, Koraput, Orissa. Presented in Map Asia-Bangkok. Google Scholar
- David, S. (2000). Symposium on Viewing the Earth: The Role of Satellite Earth Observations and Global Monitoring in International Affairs. George Washington University Washington, DC. Google Scholar
- Davranche, A., Lefebvre, G. and Poulin, B. (2010). Wetland monitoring using classification trees and SPOT-5 seasonal time series. Remote Sens. Environ., 114(3): 552–562. ArticleGoogle Scholar
- Dekker, A.G., Malthus, T.J., Wijnen, M.M. and Seyhan, E. (1992). Remote sensing as a tool for assessing water quality in Loosdrecht Lakes. Hydrobiologia, 233(1–3): 137–159. ArticleGoogle Scholar
- Deng, C. and Wu, C. (2012). BCI: A biophysical composition index for remote sensing of urban environments. Remote Sens. Environ., 127: 247–259. ArticleGoogle Scholar
- Dhar, R.B., Chakraborty, S., Chattopadhyay, R. and Sikdar, P.K. (2019). Impact of land-use/land-cover change on land surface temperature using satellite data: A case study of Rajarhat Block, North 24-Parganas District, West Bengal. J. Indian Soc. Remote Sens., 47(2): 331-348. doi:https://doi.org/10.1007/s12524-019-00939.
- Dhinwa, P.S., Pathan, S.K., Sastry, S.V.C., Rao, Mukund, Majumder, K.L., Chotani, M.L., Singh, P.J. and Sinha, R.L.P. (1992). Land-use change analysis of Bharatpur district using GIS. J. Indian Soc. Remote Sens., 20(4): 237–250. ArticleGoogle Scholar
- Dong, Z.Y., Wang, Z.M., Liu, D.W., Song, K.S., Li, L. and Jia, M.M. (2014). Mapping wetland areas using landsat-derived NDVI and LSWI: A case study of West Songnen Plain, Northeast China. J. Indian Soc. Remote Sens., 42(3): 569–576. ArticleGoogle Scholar
- Drake, J.A., Mooney, H.A., Castri, F.D., Groves, R.H., Kruger, F.J., Aejmamek, M. and Williamson, M. (1989). Biological Invasions: A Global Perspective. John Wiley & Sons, Chichester. Google Scholar
- Durduran, S.S. (2010). Coastline change assessment on water reservoirs located in the Konya Basin area, Turkey, using multitemporal landsat imagery. Environ. Monit. Assessm., 164(1–4): 453–461. ArticleCASGoogle Scholar
- Dvorett, D., Davis, C. and Papes, M. (2016). Mapping and hydrologic attribution of temporary wetlands using recurrent Landsat imagery. Wetlands, 36(3): 431–443. ArticleGoogle Scholar
- Elijah, R. (1997). Using Remote Sensing to Monitor Global Change. National Wetlands Research Center Fact Sheet 096–97. Google Scholar
- Everitt, J.H., Escobar, D.E. and Davis, M.R. (2001). Reflectance and image characteristics of selected noxious rangeland species. RS GIS Symp., 54(2): A106–A120 (special electronic section). Google Scholar
- Feyisa, G.L., Meilby, H., Fensholt, R. and Proud, S.R. (2014). Automated water extraction index: A new technique for surface water mapping using Landsat imagery. Remote Sens. Environ., 140: 23–35. ArticleGoogle Scholar
- Franklin, S. (2001). Remote Sensing for Sustainable Forest Management. CRC Press LLC, USA,409 pp. Google Scholar
- Franklin, S.E., Titus, B.D. and Gillespie, R.T. (1994). RS of vegetation cover at forest regeneration sites. Global Ecol. Biogeogr. Lett., 4(2): 40–46. ArticleGoogle Scholar
- Garg, J.K., Patel, J.G. and Singh, T.S. (2005). Methane emission from wetlands in India. Scientific Report, Space Applications Centre, Ahmedabad. SAC/RESIPA/FLPG/ SR/03/2005, p. 131. Google Scholar
- Ghude, S.D., Fadnavis, S., Beig, G., Polade, S.D. and Vander, A.R.J. (2008). Detection of surface emission hot spots, trends and seasonal cycle for satellite retrieved NO2 over India. J. Geophys. Res., 13: D20305. doi:https://doi.org/10.1029/2007JD009615. ArticleCASGoogle Scholar
- Gilmore, M.S., Civco, D.L., Wilson, E.H., Barrett, N., Prisloe, S., Hurd, J.D. and Chadwick, C. (2010). Remote sensing and in situ measurements for delineation and assessment of coastal marshes and their constituent species. In: Wang, J. (ed.), Remote Sensing of Coastal Environment. CRC, Boca Raton, Florida, 423 pp. Google Scholar
- Goodchild, M.F. (2001). Metrics of scale in remote sensing and GIS. Int. J. Appl. Earth Observ. Geoinform., 3(2): 114–120. ArticleGoogle Scholar
- Goyal, S., Bharawadaj, R.S. and Jugran, D.K. (1999). Multicriteria analysis using GIS for groundwater resource evaluation in Rawasen and Pilli watershed, U.P. http://wwwGISdevelopment.net. Accessed on 04 May 2020.
- Guariglia, A., Buonamassa, A., Losurdo, A., Saladino, R., Trivigno, M.L., Zaccagnino, A. and Colangelo, A. (2006). A multisource approach for coastline mapping and identification of shoreline changes. Ann. Geophys., 49: 295–304. Google Scholar
- Gupta, R.P. (2005). Remote Sensing Geology, Second Edition. Springer Publications, pp. 537. Google Scholar
- Haltuch, M.A., Berkman, P.A. and Garton, D.W. (2000). Geographic information system (GIS) analysis of ecosystem invasion: Exotic mussels in Lake Erie. Limnol. Oceanogr., 45(8): 1778–1787. ArticleGoogle Scholar
- Han, B., Loisel, H., Vantrepotte, V., Mériaux, X., Bryère, P., Ouillon, S., Dessailly, D., Xing, Q. and Zhu, J. (2016). Development of a semi-analytical algorithm for the retrieval of suspended particulate matter from remote sensing over clear to very turbid waters. Remote Sens., 8(3): 211. doi:https://doi.org/10.3390/rs8030211ArticleGoogle Scholar
- Harding, G.B. and Bate, G.C. (1991). The occurrence of invasive Prosopis species in the north-western Cape, South Africa. South Afr. J. Sci., 87(5): 188–192. Google Scholar
- Hellweger, F.L., Schlosser, P., Lall, U. and Weissel, J.K. (2004). Use of satellite imagery for water quality studies in New York Harbor. Estuar Coast Shelf Sci., 61(3): 437–448. ArticleCASGoogle Scholar
- Huete, A., Liu, H., Batchily, K.V. and Van Leeuwen, W. (1997). A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sens. Environ., 59(3): 440–451. ArticleGoogle Scholar
- Humes, K., Kustas, W., Moran, M., Nichols, W. and Weltz, M. (1994). Variability of emissivity and surface temperature over a sparsely vegetated surface. Water Resources Res., 30(5): 1299–1310. ArticleGoogle Scholar
- Jafari, R. and Bakhshandehmehr, L. (2013). Quantitative mapping and assessment of environmentally sensitive areas to desertification in central Iran. Land Degrad. Dev., 27(2): 108–119. ArticleGoogle Scholar
- Jaiswal, R.K., Mukherjee, S., Krishnamurthy, J. and Saxena, R. (2003). Role of remote sensing and GIS techniques for generation of groundwater prospect zones towards rural development – An approach. Int. J. Remote Sens., 24(5): 993–1008. Google Scholar
- Jat, M.K., Garg, P.K. and Khare, D. (2008). Modeling urban growth using spatial analysis techniques: A case study of Ajmer city (India). Int. J. Remote Sens., 29(2): 543–567. ArticleGoogle Scholar
- Jensen, J. (2006). Remote Sensing of the Environment: An Earth Resource Perspective. 2nd ed. Prentice Hall, New Jersey, 608 pp. Google Scholar
- Joshi, C., Leeuwa, J. and Duren, I.C. (2004). Remote sensing and GIS applications for mapping and spatial modelling of invasive species. Proceedings of XXXV ISPRS congress. www.isprs.org.comm7/papers/132.pdf.
- Joyce, K.E., Belliss, S.E., Samonsov, S.V., McNeill, S.J. and Glassey, P.J. (2009). A review of the status of satellite remote sensing and image processing techniques for mapping natural hazards and disasters. Prog. Phys. Geog., 33: 183–207. ArticleGoogle Scholar
- Joyce, K.E., Wright, K.C., Samonsov, S.V. and Ambrosia, V.G. (2011). Remote sensing and the disaster management cycle. In: Geoscience and Remote Sensing. 317–346. DOI: 10.5772/8341. Vienna: In-Tech Publishing. Google Scholar
- Kaku, K. and Held, A. (2013). Sentinel Asia: A space-based disaster management support system in the Asia-Pacific region. Int. J. Disaster Risk Reduction, 6: 1–17. DOI: 10.1016/j.ijdrr.2013.08.004. Google Scholar
- Kant, Y., Bharath, B., Mallick, J., Atzberger, C. and Kerle, N. (2009). Satellite-based analysis of the role of land use/land cover and vegetation density on surface temperature regime of Delhi, India. J. Indian Soc. Remote Sens., 37(2): 201–214. ArticleGoogle Scholar
- Kaplan, G. and Avdan, U. (2017). ISPRS Annals of the photogrammetry, remote sensing and spatial information sciences, volume IV-4/W4, 4th International GeoAdvances Workshop, 14–15 October 2017, Safranbolu, Karabuk, Turkey. Google Scholar
- Kaufman, Y.J. and Tanre, D. (1992). Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Trans. Geosci. Remote Sens., 30(2): 261–270. ArticleGoogle Scholar
- Kayastha, N., Thomas, V., Galbraith, J. and Banskota, A. (2012). Monitoring wetland change using inter-annual landsat time-series data. Wetlands, 32(6): 1149–1162. ArticleGoogle Scholar
- Khan, S., Bhuvneswari, B. and Quereshi, M. (1999). Land use/land cover mapping and change detection using remote sensing and GIS: A case study of Jamuna and its environments. Socio-econ. Dev. Rec., 6: 32–33. Google Scholar
- Klemas, V. (2011). Remote sensing of wetlands: Case studies comparing practical techniques. J. Coastal Res., 27: 418–427. ArticleGoogle Scholar
- Kolios, S. (2018). Contribution of Satellite Remote Sensing in Environmental Monitoring at Regional Scales: A Short Review. Environmental Analysis & Ecology Studies, 1(3): 66–67. ArticleGoogle Scholar
- Krishnamoorthi, N. (2016). Role of remote sensing and GIS in natural-disaster management cycle. Imperial J. Interdiscip. Res. (IJIR), 2(3): 144–154. Google Scholar
- Krishnamurthy, J., Mani, A.N., Jayaram, V. and Manivel, M. (2000). Groundwater resources development in hard rock terrain: An approach using remote sensing and GIS techniques. Int. J. Appl. Earth Observ. Geoinform., 2(3/4): 204–215. ArticleGoogle Scholar
- Kulkarni, A.V., Bahuguna, I.M., Rathore, B.P., Singh, S.K., Randhawa, S.S., Sood, R.K. et al. (2007). Glacial retreat in Himalaya using Indian Remote Sensing Satellite data. Curr. Sci., 92(1): 69–74. Google Scholar
- Kulkarni, A.V., Dhar, S., Rathore, B.P., Govindharaj, K.B. and Kalia, R. (2006). Recession of Samudra Tapu glacier, Chandra river basin, Himachal Pradesh. J. Indian Soc. Remote Sens., 34(1): 39–46. ArticleGoogle Scholar
- Kulkarni, A.V., Rathore, B.P., Mahajan, S. and Mathur, P. (2005). Alarming retreat of Parbati Glacier, Beas basin, Himachal Pradesh. Curr. Sci., 88(11): 1844–1850. Google Scholar
- Kumar, J.A.V., Pathan, S.K. and Bhanderi, R.J. (2007). Spatio-temporal analysis for monitoring urban growth—A case study of Indore city. J. Indian Soc. Remote Sens., 35(1): 11–20. ArticleGoogle Scholar
- Lang, M.W. and McCarty, G.W. (2008). Remote sensing data for regional wetland mapping in the United States: Trends and future prospects. In: Russo, R.E. (ed.), Wetlands: Ecology, Conservation and Restoration. pp. 1–40. Nova, Hauppauge, New York. Google Scholar
- Lang, W.M., Chavez, L.B., Tiner, R.W. and Klemas, V.V. (2015). Advances in Remotely Sensed Data and Techniques for Wetland Mapping and Monitoring. In: Remote Sensing of Wetlands. pp. 79–116. Taylor and Francis. Google Scholar
- Lemmens, M.J.P.M. (2001). Structure-based Edge Detection: Delineation of Boundaries in Aerial and Space Images. Doctoral thesis. Delft University Press, Delft. Google Scholar
- Levesque, J., Neville, R.A., Staenz, K. and Truong, Q.S. (2001) Preliminary results on the investigation of hyperspectral remote sensing for the identification of uranium mine tailings. In: Proceedings of the ISSSR: June 10–15, 2001, Quebec City, Canada. Google Scholar
- Lillycrop, W.J., Pope, R.W. and Wozencraft, J.M. (2002). Airborne lidar hydrography: A vision for tomorrow. Sea Technol., 43: 27–34. Google Scholar
- Los, S.O., Tucker, C.J., Anyamba, A., Cherlet, M., Collatz, G.J., Giglio, L., Hall, F.G. and Kendall, J.A. (2002). Environmental Modelling with GIS and RS. Taylor & Francis, London. Google Scholar
- Machiwal, D., Jha, K.M. and Mal, C.B. (2011). Assessment of groundwater potential in a semi-arid region of India using remote sensing, GIS and MCDM techniques. Water Resour. Manage., 25: 1359–1386. ArticleGoogle Scholar
- Madrucci, V., Taioli, F. and de Araújo, C.C. (2008). Groundwater favorability map using GIS multicriteria data analysis on crystalline terrain, São Paulo State, Brazil. J. Hydrol., 357: 153–173. ArticleGoogle Scholar
- Maiti, S. and Bhattacharya, A.K. (2009). Shoreline change analysis and its application to prediction: A remote sensing and statistics based approach. Mar. Geol., 257: 11–23. ArticleGoogle Scholar
- Mallick, J., Rahman, A. and Singh, C.K. (2013). Modeling urban heat islands in heterogeneous land surface and its correlation with impervious surface area by using night-time ASTER satellite data in highly urbanizing city, Delhi, India. Advances in Space Research, 52(4): 639–655. ArticleGoogle Scholar
- Manjunath, K.R., Panigrahy, S., Addhya, T.K., Beri, V., Rao, K.V. and Parihar, J.S. (2009). Methane emission inventory from Indian Rice ecosystem using remote sensing, GIS and field observations. Scientific Report, Space Applications Centre, Ahmedabad, SAC/AFEG/AMD/EIAA/SN/03/08, p. 131. Google Scholar
- Mas, J.F. and Flores, J.J. (2008). The application of artificial neural networks to the analysis of remotely sensed data. Int. J. Remote Sens., 29(3): 617–663. ArticleGoogle Scholar
- May, C.J., Neale, C.M.U. and Henderson, N. (2000). Mapping riparian resources in semiarid watersheds using airborne multispectral imagery. IAHS AISH Publ., 267: 539–541. Google Scholar
- MEC (Ministerio da Educacao e Cultura) (1999). Secretaria de Educacao Media e Tecnologica. Parametros Curriculares Nacionais: Ensino Medio. Brasilia, pp. 188. Google Scholar
- Merified, P.M. and Lamar, D.L. (1975). Active and inactive faults in southern California viewed from Skylab, TM X-58168, vol. 1. NASA, 779–797. Google Scholar
- Michael, D.K. and David, D.H. (2000). Monitoring the Earth’s vital signs. Sci. Am., 282(4): 92–97. ArticleGoogle Scholar
- Miller, S.N., Semmens, D.J., Goodrich, D.C., Hernandez, M., Miller, R.C., Kepner, W.G. and Guertin, D.P. (2007). The automated geospatial watershed assessment tool. J. Environmental Modeling and Software, 22: 365–377. ArticleGoogle Scholar
- Mishra, D., Narumalani, S., Rundquist, D. and Lawson, M. (2006). Benthic habitat mapping in tropical marine environments using Quick Bird multispectral data. Photogramm. Eng. Remote Sens., 72: 1037–1048. ArticleGoogle Scholar
- Mitsch, W.J. and Gosselink, J.G. (2015). Wetlands, 5th ed. John Wiley & Sons, Inc. New York, pp. 155-204. Google Scholar
- Mooney, H.A. and Hobbs, R.J. (2000). Invasive Species in a Changing World. Island Press, Washington, DC. Google Scholar
- Mularz (1998). Satellite and airborne remote sensing data for monitoring of an open-cast mine, ISPRS, Vol. 32. In: Fritsch, D., Englich, M. and Sester, M. (eds), ‘IAPRS’ Vol. 32/4, ISPRS Commission IV Symposium on IS - Between Visions and Applications, Stuttgart, Germany, pp. 395–402. Google Scholar
- Mumby, P.J. and Edwards, A.J. (2002). Mapping marine environments with IKONOS imagery: Enhanced spatial resolution can deliver greater thematic accuracy. Remote Sens. Environ., 82: 248–257. ArticleGoogle Scholar
- Murthy, K.S.R. and Venkateswar, R.V. (1997). Temporal studies of land use/land cover in Varah river basin, Andhra Pradesh. J. Indian Soc. Remote Sens., 25: 153–154. ArticleGoogle Scholar
- Navalgund, R.R. and Singh, P.R. (2011). Climate change studies using space based observation. J. Indian Soc. Remote Sens., 39(3): 21-295. doi. 10.1007/s12524-011-0092-4. Google Scholar
- Navalgund, R.R. (2006). Indian Earth observation system: An overview. Asian J. Geoinformatics, 6: 17–25. Google Scholar
- Navalgund, R.R., Jayaraman, V. and Roy, P.S. (2007). Remote sensing applications: An overview. Curr. Sci., 93(12): 1747–1766. Google Scholar
- Nicloś, R., Caselles, V., Coll, C., Valor, E. and Rubio, E. (2004). Autonomous measurements of sea surface temperature using in situ thermal infrared data. J. Atmos. Oceanic Technol., 21(4): 683–692. ArticleGoogle Scholar
- Novo, E.M.L.M., Costa, M.P.F., Mantovani, J.E. and Lima, I.B.T. (2002). Relationship between macrophyte stand variables and radar backscatter at L and C band, Tucurui reservoir, Brasil. Int. J. Remote Sens., 23: 1241–1260. ArticleGoogle Scholar
- NRSA (1994). Mapping and monitoring urban sprawl of Hyderabad. Project report. National Remote Sensing Agency, Balanagar, Hyderabad, pp. 1–85. Google Scholar
- NRSA (2005). National Remote Sensing Agency Quarterly Newsletter. 2(2), Balanagar, Hyderabad. Google Scholar
- Ody, A., Doxaran, D., Vanhellemont, Q., Nechad, B., Novoa, S., Many, G., Bourrin, F., Verney, R., Pairaud, I. and Gentili, B. (2016). Potential of high spatial and temporal ocean color satellite data to study the dynamics of suspended particles in a Micro-Tidal River Plume. Remote Sens., 8. Google Scholar
- Ouillon, S., Douillet, P. and Petrenko, A. (2008). Optical algorithms at satellite wavelengths for total suspended matter in tropical coastal waters. Sensors, 8: 4165–4185. ArticleCASGoogle Scholar
- Ozesmi, S.L. and Bauer, M.E. (2002). Satellite remote sensing of wetlands. Wetland Ecol. Manage., 10: 381–402. ArticleGoogle Scholar
- Pal, S. and Ziaul, S. (2017). Detection of land use and land cover change and land surface temperature in English Bazar urban centre. Egypt. J. Remote Sens. Space Sci., 20(1): 125–145. Google Scholar
- Palaniyandi, M. and Nagarathinam, V. (1997). Land use/land cover mapping and change detection using space born data. J. Soc. Remote Sens., 25: 27–33. ArticleGoogle Scholar
- Pandey, N.K., Shukla, A.K., Shukla, S. and Pandey, M. (2014). Assessment of underground water potential zones using modern geomatics technologies in Jhansi district, Uttar Pradesh, India. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Volume XL-8. 2014 ISPRS Technical Commission VIII Symposium, 09–12 December 2014, Hyderabad, India, 337–381. Google Scholar
- Panigrahy, S., Anitha, D., Kimothi, M.M. and Singh, S.P. (2007). Climate change indicators in alpine ecology of central Himalaya: An analysis using satellite remote sensing data. Tropical Ecology Congress 2007, 2–5 December 2007, Dehradun, India. Google Scholar
- Papagiannopoulos, N., Mona, L., Alados-Arboledas, L., Amiridis, V. and Baars, H. (2016). CALIPSO climatological products: Evaluation and suggestions from EARLINET. Atmos. Chem. Phys., 16(4): 2341–2357. ArticleCASGoogle Scholar
- Peters, A.J., Reed, B.C., Eve, M.D. and McDaniel, K.C. (1992). RS of brome snakeweed (Gutierrezia sarothrae) with NOAA-10 spectral image processing. Weed Technol., 6(4): 1015–1020. ArticleGoogle Scholar
- Popescu, S.C., Zhao, K., Neuenschwander, A. and Lin, C. (2011). Satellite lidar vs. small footprint airborne lidar: Comparing the accuracy of aboveground biomass estimates and forest structure metrics at footprint level. Remote Sens. Environ., 115(11): 2786–2797. ArticleGoogle Scholar
- Prakash, A. and Gupta, R.K. (1998). Land-use mapping and change detection in a coal mining area – A case study in the Jharia coal field, India. Int. Rem. Sen., 19(3): 391–410. Google Scholar
- Prasad, A.K., Singh, R.P. and Singh, A. (2004). Variability of aerosol optical depth over Indian subcontinent using MODIS data. J. Indian Soc. Remote Sens., 32: 313–316. ArticleGoogle Scholar
- Puissant, A., Zhang, W. and Skupinski, G. (eds) (2012). Urban morphology analysis by high and very high spatial resolution remote sensing. In: International Conference on Geographic Object-Based Image Analysis. Google Scholar
- Rahman, A. (2006). Application of remote sensing and GIS technique for urban environment management and development of Delhi, India. Applied Remote Sensing for Urban Planning Governance and Sustainability. http://www.springerlink.com/index/x5w74277j3I13959pdf.
- Rahman, A., Netzband, M., Singh, A. and Mallick, J. (2009). An assessment of urban environmental issues using remote sensing and GIS techniques: An integrated approach. A case study, Delhi, India. Urban Population-Environment Dynamics in the Developing World: Case Studies and Lessons Learned, International Cooperation in National Research in Demography (CICRED), Paris, pp. 181–211. Google Scholar
- Rai, P.K. and Kumra, V.K. (2011). Role of Geoinformatics in urban planning. J. Sci. Res., 55: 11–24. Google Scholar
- Rao, Y.S. and Jugran, D.K. (2003). Delineation of groundwater potential zones and zones of groundwater quality suitable for domestic purposes using remote sensing and GIS. Hydrol. Sci. J., 48(5): 821–833. ArticleGoogle Scholar
- Rib, H.T. and Liang, T. (1978). Recognition and identification, in landslides – Analyses and control. In: Schuster, R.L. and Krizek, R.J. (eds), National Academy of Sciences, Washington, DC, pp. 34–69. Google Scholar
- Ruelland, D., Dezetter, A., Puech, C. and Ardoin-Bardin, S. (2008). Long-term monitoring of land cover changes based on Landsat imagery to improve hydrological modelling in West Africa. Int. J. Remote Sens., 29(12): 3533–3551. ArticleGoogle Scholar
- Saha, P., Saha, B.K. and Hazra, S. (2014). Recent changes in coastal configuration of Henry’s Island. Curr. Sci., 107(4): 679–688. Google Scholar
- Sander, P., Chesley, M.M. and Minor, T.B. (1996). Groundwater assessment using remote sensing and GIS in a rural groundwater project in Ghana: Lessons learned. Hydrogeol. J., 4(3): 40–49. ArticleGoogle Scholar
- Santillan, J., Makinano, M. and Paringit, E. (2011). Integrated Landsat image analysis and hydrologic modeling to detect impacts of 25-year land-cover change on surface runoff in a Philippine watershed. Remote Sens., 3(6): 1067–1087. ArticleGoogle Scholar
- Saraf, A.K. and Chowdhury, P.R. (1998). Integrated remote sensing and GIS for groundwater exploration and identification of artificial recharge sites. Int. J. Remote Sens., 19(10): 1825–1841. ArticleGoogle Scholar
- Sathish Kumar, J., Sanjeevi, S. and Govindan, S. (2011). Hyperspectral radiometry to characterize dunite alteration and magnesite deposits of Salem, South India. Ind. J. Remote Sens., 39(4): 497–505. ArticleGoogle Scholar
- Satyanarayana, R. (1991). Remote sensing studies of the land and water resources of Hyderabad city and its environs. PhD thesis. Sri Venkateswara University. Google Scholar
- Schneider, A., Friedl, M.A. and Potere, D. (2009). A new map of global urban extent from MODIS satellite data. Environ. Res. Lett., 4(4): 11. ArticleGoogle Scholar
- Schneider, A., Friedl, M.A. and Potere, D. (2010). Mapping global urban areas using MODIS 500-m data: New methods and datasets based on ‘urban ecoregions’. Remote Sens. Environ., 114(8): 1733–1746. ArticleGoogle Scholar
- Schutz, B.E., Zwally, H.J., Shuman, C.A., Hancock, D. and DiMarzio, J.P. (2005). Overview of the ICE Sat mission. Geophys. Res. Lett., 32(21): 01. ArticleGoogle Scholar
- Sentinel Asia. [Internet] (2015). Available from: https://sentinel.tksc.jaxa.jp/sentinel2/top Control.jsp. Accessed 24 April 2019.
- Sepehr, A., Zucca, C. and Nowjavan, M.R. (2014). Desertification status using factors representing ecological resilience. British Journal of Environment and Climate Change, 4(3): 279–291. ArticleGoogle Scholar
- Shahid, S. and Nath, S.K. (2002). GIS integration of remote sensing and electrical sounding data for hydrogeological exploration. J. Spatial Hydrol., 2(1): 1–12. Google Scholar
- Shepherd, J.D. and Dymond, J.R. (2000). BRDF correction of vegetation in AVHRR imagery. Remote Sens., Environ., 74(3): 397–408. ArticleGoogle Scholar
- Sikdar, P.K., Chakraborty, S., Adhya, E. and Paul, P.K. (2004). Land use/land cover changes and groundwater potential zoning in and around Raniganj coal mining area, Bardhaman District, West Bengal: A GIS and remote sensing approach. J. Spat. Hydrol., 4(2): 1–24. Google Scholar
- Singh, A., Srivastav, S.K., Kumar, S. and Chakrapani, J.G. (2015). A modified-DRASTIC model (DRASTICA) for assessment of groundwater vulnerability to pollution in an urbanized environment in Lucknow, India. Environ. Earth Sci., 74: 5475–5490. ArticleCASGoogle Scholar
- Singh, R.P., Dey, S., Tripathi, S.N., Tare, V. and Holben, B. (2004). Variability of aerosol parameters over Kanpur, Northern India. J. Geophys. Res., 109: D23206. doi:https://doi.org/10.1029/2004JD004966. ArticleGoogle Scholar
- Singh, R.P., Sobhan, K.K., Panigrahy, S. and Parihar, J.S. (2008a). Study of carbon monoxide using remote sensing data. Proceedings of Technical Hindi Seminar on January 29, 2008. Space Applications Centre, Ahmedabad. Google Scholar
- Singh, R.P., Sobhan, K.K., Panigrahy, S., Buchwitz, M. and Parihar, J.S. (2008b). Variability of atmospheric carbon dioxide concentration over India derived using ENVISATSCIAMACHY measurements. Presented at National Seminar on Advances in Remote Sensing Technology and Applications with Special Emphasis on Microwave Remote Sensing. Annual Conference of Indian Society of Remote Sensing. December 18–20, 2008. Nirma University, Ahmedabad, India. Google Scholar
- Sokhi, B.S. (1999). Remote sensing in urban land use structure-transportation system relationship: A case study of Delhi. In: Sokhi, B.S. and Rashid, S.M. (eds), Remote Sensing of Urban Environment. Manak Publications Ltd., Delhi, pp. 174–195. Google Scholar
- Sokhi, B.S., Sharma, N.D. and Uttarwar, P.S. (1989). Satellite remote sensing in urban sprawl mapping and monitoring: A case study of Delhi. J. Indian Soc. Remote Sens., 17(3): 57–69. ArticleGoogle Scholar
- Stavros, K., Chrysostomos, D. and Stylios (2013). Identification of land cover/land use changes in the greater area of the Preveza peninsula in Greece using lands at satellite data. Appl. Geogr., 40: 150–160. Google Scholar
- Stow, D., Hope, A., Richardson, D., Chen, D., Garrison, C. and Service D. (2000). Potential of colour-infrared digital camera imagery for inventory and mapping of alien plant invasions in South African shrublands. Int. J. Remote Sens.,21(15): 2965–2970. ArticleGoogle Scholar
- Sudhira, H.S., Ramachandra, T.V., Raj, K.S. and Jagadish, K.S. (2003). Urban growth analysis using spatial and temporal data. J. Indian Soc. Remote Sens., 31(4): 299–311. ArticleGoogle Scholar
- Thakur, S., Dey, D., Das, P., Ghosh, P.B. and De, T.K. (2017). Shoreline change detection using remote sensing in the Bakkhali Coastal Region, West Bengal, India Indian J. Geosci., 71(4): 611–626. Google Scholar
- Thakur, B. and Parai, A. (1993). A review of recent urban geographic studies in India. GeoJournal, 29(2): 187–196. ArticleGoogle Scholar
- Thenkabail, P.S. (1999). Characterization of the alternative to slash-and-burn benchmark research area representing the Congolese rainforests of Africa using near-real-time SPOT HRV data. Int. J. Remote Sens.,, 20(5): 839–877. ArticleGoogle Scholar
- Thenkabail, P.S. (2004). Inter-sensor relationships between IKONOS and Landsat-7 ETM+ NDVI data in three ecoregions of Africa. Int. J. Remote Sens., 25(2): 389–408. ArticleGoogle Scholar
- Thenkabail, P.S., Biradar, C.M., Turral, H., Noojipady, P., Li, Y.J., Vithanage, J., Dheeravath, V., Velpuri, M., Schull, M., Cai, X.L. and Dutta, R. (2006). An Irrigated Area Map of the World (1999) derived from remote sensing. Research Report # 105; International Water Management Institute, pp. 74. Google Scholar
- Thenkabail, P.S., Enclona, E.A., Ashton, M.S., Legg, C. and Jean De Dieu, M. (2004). Hyperion, IKONOS, ALI, and ETM+ sensors in the study of African rainforests. Remote Sens. Environ., 90: 23–43. ArticleGoogle Scholar
- Tim, U.S. and Mallavaram, S. (2003). Application of GIS Technology in Watershed-based Management and Decision Making, Watershed Update, 1(5): 1-6. Google Scholar
- Trembanis, A.C., Hiller, T. and Patterson, M. (2008). Exploring coral reef sustainability. Hydro Int., 12: 10–15. Google Scholar
- Tucker, C.J., Grant, D.M. and Dykstra, J.D. (2005). NASA’s global orthorectified Landsat dataset. Photogramm. Eng. Remote Sens., 70(3): 313–322. ArticleGoogle Scholar
- Ustin, S.L., DiPietro, D., Olmstead, K., Underwood, E. and Scheer, G. (2002). Hyperspectral RS for invasive species detection and mapping. International Geoscience and RS Symposium, 24th Canadian Symposium on RS, Toronto, Canada. Google Scholar
- Uttarwar, P.S. and Sokhi, B.S. (1989). Remote sensing application in urban fringe study: A case study – Delhi. J. Indian Soc. Remote Sens., 17(3): 43–56. Google Scholar
- Van der Meer, F., Schmidt, K.S., Bakker, A. and Bijker, W. (2002). New environmental RS systems. In: Skidmore, A.K. (ed.), Environmental Modelling with GIS and RS. Taylor & Francis, London, pp. 26–51. Google Scholar
- Venugopal, G. (1998). Monitoring the effects of biological control of water hyacinths using remotely sensed data: A case study of Bangalore, India. Singapore J. Trop. Geogr, 19(1): 92–105. ArticleGoogle Scholar
- Vrindts, E., De Baerdemaeker, J. and Ramon, H. (2002). Weed detection using canopy reflection. Precis. Agric., 3(1): 63–80. ArticleGoogle Scholar
- Vyas, N.K., Dash, M.K., Bhandari, S.M., Khare, N., Mitra, A. and Pandey, P.C. (2003). On the secular trend in sea ice extent over the Antarctic region based on OCEANSAT-1 MSMR observations. Int. J. Remote Sens., 24: 2277–2287. ArticleGoogle Scholar
- Wang, Y. (2010). Remote sensing of coastal environments: An overview. In: Wang, J. (ed.), Remote Sensing of Coastal Environments. CRC, Boca Raton, Florida, 423 pp. Google Scholar
- Weng, Q., Lu, D. and Schubring, J. (2004). Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sens. Environ., 89(4): 467–483. ArticleGoogle Scholar
- Wilcove, D.S. and Chen, L.Y. (1998). Management costs for endangered species. Conserv. Biol., 12: 1405–1407. ArticleGoogle Scholar
- WMO (World Meteorological Organization) (2011). Global Climate Observing System Systematic Observation Requirements for Satellite-based Data Products for Climate: 2011 Update GCOS-154. Google Scholar
- Wu, Q. (2018). GIS and Remote Sensing Application in Wetland Mapping and Monitoring. In: Huang, B. (ed.), Geographic Information System. Elseiver, Netherlands, 203: 139-157. Google Scholar
- Yamazaki F. (2001). Applications of remote sensing and GIS for damage assessment. In: Corotis et al. (eds), Structural Safety and Reliability. Swets & Zeitlinger, ISBN 90 5809 197 X. Google Scholar
- Yang, C., Everitt, J.H., Fletcher, R.S., Jensen, J.R. and Mausel, P.W. (2009). Mapping black mangrove along the south Texas gulf coast using AISA+ hyperspectral imagery. Photogramm. Eng. Remote Sens., 75: 425–436. ArticleGoogle Scholar
- Yang, J. and Artigas, F.J. (2009). Mapping salt marsh vegetation by integrating hyperspectral and LiDAR remote sensing. In: Wang, J. (ed.), Remote Sensing of Coastal Environment. CRC, Boca Raton, Florida, 423 pp. Google Scholar
- Zhang, J. and Foody, G.M. (2001). Fully-fuzzy supervised classification of sub-urban land cover from remotely sensed imagery: Statistical and artificial neural network approaches. Int. J. Remote Sens., 22(4): 615–628. ArticleGoogle Scholar
Author information
Authors and Affiliations
- Department of Environment Management, Indian Institute of Social Welfare and Business Management, Kolkata, India Surajit Chakraborty
- Surajit Chakraborty